Chargement Évènements
Chimie1

(Nano)materials by polymerization-induced self-assembly (PISA)

Jutta Rieger
Sorbonne Université & CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM),
Polymer Chemistry Team, Paris, France

Zoom link :
https://espci.zoom.us/j/96483118269?pwd=OUZzY0VhZWY2MG5ZQXdvaURHVDMrZz09

Contact : jutta.rieger@sorbonne-université.fr

Polymerization-induced self-assembly (PISA) combines the controlled synthesis of amphiphilic block
copolymers with their in situ self-assembly into self-stabilized nanoparticles.(1) Initially developed to
synthesize colloidal polymer dispersions in water without using surfactants, which is valuable for
coatings applications(2) or biomedical applications,(3) it is also an efficient and prised tool to synthesize
nanoparticles of various morphologies, typically spheres, worm and vesicles, produced in high solids
contents.(1,4,5)
In my presentation, I will present a selection of polymer systems we have been developing in the last
decade using this technology. Presented form a polymer chemists’ point of view, it is supposed to provide
an overview on the opportunities of PISA. For example, we have investigated the potential of PISAprepared core-shell nanoparticles – used either as building blocks or as additives – to enhance the
properties of waterborne acrylic coatings.(6,7,2)

Another work is related to the development of a robust and
straightforward strategy to prepare polymeric nanofibers.(8) Finally, I will also present a work in which we
have prepared thermoresponsive polymer networks based on associative BAB block copolymer in water
at high solids.(9)

References

1 D’Agosto, F.; Rieger, J.; Lansalot, M. Angew. Chem. Int. Ed. 2020, 59 (22), 8368.
2 Velasquez, E.; Rieger, J.; Stoffelbach, F.; D’Agosto, F.; Lansalot, M.; Dufils, P.-E.; Vinas, J. Polymer 2016, 106, 275.
3 Grazon, C.; Rieger, J.; Beaunier, P.; Charleux, B.; Méallet-Renault, R.; Clavier, G. Polym. Chem. 2016, 7, 4272.
4 Rieger, J. Macromol. Rapid Commun. 2015, 36, 1458.
5 Canning, S. L.; Smith, G.N.; Armes, S.P. Macromolecules 2016, 49, 1985.
6 Chenal, M.; Rieger, J.; Vechambre, C.; Chenal, J.M.; Chazeau, Creton, C.; Bouteiller, L. Macromol. Rapid Commun. 2013, 34, 1524; Chenal, M.; Vechambre, C.; Chenal, J. M.; Chazeau, L.; Humblot, V.; Bouteiller, L.; Creton, C.; Rieger, J. Polymer, 2017, 109, 187.
7 Albigès, R.; Klein, P.; Roi, S.; Stoffelbach, F.; Creton, C.; Bouteiller, L.; Rieger, J. Polym. Chem. 2017, 8, 4992.
8 Mellot, G.; Guigner, J.-M.; Bouteiller, L.; Stoffelbach, F.; Rieger, J. Angew. Chem. 2019, 58, 3173.
9 Biais, P.; Engel, M.; Colombani, O.; Nicolai, T.; Stoffelbach, F.; Rieger, J. Polym. Chem. 2021, 12, 1040.

Détails

Date :
25 mars 2021
Heure :
11 h 00 - 12 h 00
Catégorie d’Évènement:

Lieu

Visioconférence
  • This évènement has passed.