MODELISATION DE PROCEDES : 1 D, 2 D, STATIQUE OU DYNAMIQUE

BASES & BONNES PRATIQUES

Formation continue courte sur les bases et bonnes pratiques de la modélisation en génie des procédés

CONTEXTE

En génie des procédés, on peut distinguer deux objectifs majeurs à la modélisation :

- (i) l'acquisition et la capitalisation de connaissances, d'une part,
- (ii) (ii) le contrôle et la supervision du procédé, d'autre part.

La formation rappelle les **fondamentaux du génie des procédés** et introduit de manière accessible, pédagogique et ludique les étapes nécessaires pour **la mise en œuvre et la bonne conduite des simulations** dans ce domaine. Le choix ayant été fait de se limiter à des cas simples, cette formation permet de **s'initier à la simulation des procédés** et de **découvrir de grands outils de simulation** professionnels en évitant l'écueil d'un formalisme mathématique.

OBJECTIFS

A la fin de la formation, les stagiaires sauront :

- Sélectionner et piloter un outil professionnel de simulation pour modéliser un procédé simple (COMSOL ASPEN HYSYS)
- Formaliser l'environnement à modéliser (poser les connaissances et les résultats attendus)
- Sélectionner les processus de transferts (matières, énergie, chimie) intervenant dans le procédé étudié
- Etablir des bilans matières et économiques simplifiés
- Analyser et critiquer les résultats obtenus
- Construire et conduire une modélisation 1D, 2D, en mode statique ou dynamique

PUBLIC CONCERNE : Ingénieurs, Master 2, Managers, Chercheurs

LANGUE: Français

NIVEAU: Bases et Bonnes

pratiques

PREREQUIS: Connaissances de base en physique et chimie

DUREE: 2,5 jours

SESSION 2022: 22-24 mai 2023

LIEU: Chimie ParisTech, Paris ou

Teams

TARIFS:

Industriels : 1 700 € Autres : 1200 €

Si hors session (personnalisé) :

2500 €/ jour

ATTESTATION DE SUIVI : Oui

PROGRAMME

	Jour 1	Jour 2	Jour 3
Titre	PROCESSUS DE TRANSFERT EN FAMILIARISATION AVEC COMSOL 1D/2D	ETUDE D'UN PROCEDE COMPLET ET SIMULATION SOUS ASPEN HYSYS STATIQUE	ETUDE D'UN REACTEUR SOUS ASPEN HYSYS DYNAMIC
Programme matin	Rappels théoriques (3h) Mise en mouvement des fluides et formation / disparition / diffusion des espèces dans les réacteurs chimiques Processus de transfert de chaleur	Rappels théoriques (2h) Opérations unitaires les plus employées dans l'industrie	Tutoriel d'apprentissage (2h) Hysys en mode dynamique Etude de cas (2h) Modélisation et étude du comportement d'un réacteur tubulaire employé pour la synthèse du chlorure d'allyle
Programme après-midi	Etude de cas (4h) Modélisation d'un réacteur chimique sous COMSOL 1D /2D Transformation de l'anhydride phtalique en orthoxylène Réacteur Chemical Vapor Deposition pour le dépôt de couche mince de Si (NASA)	Etude de cas (5h) Modélisation du procédé d'élaboration de la cyclohexanone sous Aspen Hysys en statique	

INTERVENANTS

Cédric GUYONMaître de conférences en génie des procédés

PSL - Institut de Recherche de Chimie Paris

Equipe Procédés, Plasma, Microsystèmes

Frédéric ROUSSEAU

Maître de conférences en génie des procédés

PSL - Institut de Recherche de Chimie Paris

Equipe Procédés, Plasma, Microsystèmes

Contacts:

Pour tous renseignements et inscription, n'hésitez pas à contacter :

Mariane Ighilahriz : mariane.ighilahriz@chimieparistech.psl.eu
0787134097

ParisTech PSL