Bio-inorganic Chemistry at PSL

A series of seminar in bio-inorganic chemistry,

M. Fontecave (CdF), G. Gasser (Chimie Paris-Tech), Clotilde Policar (ENS) and Raphaël Rodriguez (Institut Curie).

PSL - BIC Program 2019 – Semester 2

ts, département de chimie de l'ENS, 24 rue Lhomond, 16h30 / 4pm30 — This seminar is founded by PSL (ANR 10-IDEX-0001-02)

University Title Short abstract University The instance of the i
Université de Reins Chargagne Ardenne (UKCA) gilles.mencrée@univ- reins.fr Photophysical properties of 5- substituted 1,10 pleaatifuncie fauitation de spin state) and spin state) and spin state) photopharantic therapy (PDT). In this domsin, thore photon absorption photopharantic therapy (PDT). In this domsin, thore photon photopharantic therapy (PDT). In this domsin, thore photon photopharantic therapy (PDT). In this domsin, thore photon photopharantic therapy (PDT). In this domsin, thore photopharantic fault) edites and the photopharantic therapy (PDT). In this domsin, thore photopharantic fault) edites and the photopharantic therapy (PDT). In this domsin, thore photopharantic fault) edites and the photopharantic therapy (PDT) is the new state domsing and the fault and the photopharantic therapy (PDT) is the photopharantic therapy (PDT) fault and the photopharantic therapy (PDT) is the new state domsing and the photopharantic fault and the photopharantic therapy (PDT) is the photopharantic therapy (PDT) fault and therapy and the photopharantic therapy (PDT) is the photophotopharantic therapy (PDT) is photopharantic therapy
Chemistry and Fine Organos synthesis, M.Y. Lomonosov Moscow State University, Mascow, Russia nazaroyêmed.chemmus. compounds with targeting ligads chemotherapeutes. One of the biggest drawbacks of these complexes, including spatial anticancer progress, including synthesis of most and bulkurcitonal compounds, specific targeting by synthesis of most and bulkur processes highly specific for the cancer cell. New compound and be avidation state of the metal is discourd. This presentation will focus on targeting of several excellent in wire synthesised and patented Complexes showed excellent in wire synthesised and patented Dirganometallic Drugs; Strange Journey The University of Greenwich, School of Science Liam@greenwich.ac.uk From Analytical Electrochemistry to Bio Organometallic Drugs; Strange Journey Our group has recently discovered, synthesised and patented Complexes showed excellent in wire synthesised and patented Organometallic brugs; Strange Journey Department of Chemistry, University of Zurich, Switzerland spingler@chem.uzh.ch Novel photosensitizer for photodynamic therapy and needues The presentation will report about our studies aimed at exploring therapy and needues Department of Radiation Oncology: Canomal photodynamic therapy and hereand spingler@chem.uzh.ch Novel photosensitizer fo
Greenwich, School of Science Electrochemistry to Bio Organometallic Drugs: A Strange Journey Cymanquine, a novel organomanganese-containing compound which take you through a journey across the fields, we will disclose a new approach to drug design that relies on combining electrochemistry with organometallic and medicinal chemistry. Department of Chemistry, University of Zurich, CH 8057 Zurich, Switzerland spingler@chem.uzh.ch Novel photosensitizer for photodynamic therapy and new methods to grow single crystals of small molecules The presentation will report about our studies aimed at exploring the possible synergistic effects of combined photo- and chemotoxic moletics within one compound. Additionally, tips and tricks for growing single crystals of small molecules will be given, starting from manual methods till the nano- crystallization, which is performed with the help of robots. Service de Chimie Click chemistry with mesolonics : new tools for heterocyclic chemistry and chemical biology The development of bio-orthogonal reactions that can be performed in living systems has long held unique fascination in the field of chemical biology. On the other hand, the discovery of chemical reactions fulfilling the criteria of the click chemistry concept continue to have a huge impact in many research fields including heterocyclic chemistry. Quintessential example is the copper- catalyzed azide-allyne cycloadditions (CuAAC). Our laboratory is involved in the discovery and use of such reactions with a focus on mesoinic compounds which can act a new interesting dipoles. These reactions were used both for biological anysthetic applications. Department of Radiation Oncology-Cancer Biology Duke University Medical Duke University Medical Dukereny classity Medical Center, Durham, NC 27770, USA ib
University of Zurich, Switzerland spingler@chem.uzh.chfor photodynamic therapy and new methods to grow single crystals of small moleculesthe possible synergistic effects of combined photo- and chemotoxic molecules within one compound. Additionally, tips and tricks for growing single crystals of small molecules will be given, starting from manual methods till the nano- crystalization, which is performed with the help of robots.Service de Chimie Bioorganique et de Maraquage, CEA-Saclay Frederic.taran@cea.frClick chemistry with mesionics : new tools for heterocyclic chemistry and chemical biologyThe development of bio-orthogonal reactions that can be performed in living systems has long held unique fascination in the field of chemistry and chemical biology. On the other hand, the discovery of chemisal reactions fulfilling the criteria of the click chemistry concept continue to have a huge impact in many research fields including heterocyclic chemistry. Quintessential example is the copper- catalyzed azide-alkyne cycloadditions (CutAC). Our laboratory is involved in the discovery and use of such reactions with a focus on mesoionic compounds which can act as new interesting dipoles. These reactions were used both for biological and synthetic applications.Department of Radiation Oncology-Cancer Biology Duke University Medical Center, Durham, NC 27710, USA ibatinic@duke.eduMn porphyrins, commonly known as SOD mimics, act as radioprotectors of normal tissue and anticancer agents via thiol signalingMn porphyrin. (MnP), MnThBU6E-2-PyP5+ (BMX-001) is presently in 4 chincal trial is with cancer patients on the radioprotection of normal brain, salivary glands, mouth muccos and low pelvic region. The 5th clinical trial is bological targets acting as antiox
Bioorganique et de Maraquage, CEA-Saclay Frederic.taran@cea.frmesoionics : new tools for heterocyclic chemistry and chemical biologyin living systems has long held unique fascination in the field of chemistry concept continue to have a huge impact in many research fields including heterocyclic chemistry. Quintessential example is the copper- catalyzed azide-alkyne cycloadditions (CuAAC). Our laboratory is involved in the discovery and use of such reactions with a focus on mesoionic compounds which can act as new interesting dipoles. These reactions were used both for biological and synthetic applications.Department of Radiation Oncology-Cancer Biology Duke University Medical Center, Durham, NC 27710, USA ibatinic@duke.eduMn porphyrins, commonly known as sOD mimics, act as radioprotectors of normal tissue and anticancer agents via thiol signalingMn porphyrins, commonly known as solo mimics, act as radioprotectors of normal tissue and anticancer agents via thiol signalingMn porphyrins, commonly known as solo mimics, act as radioprotectors of normal tissue and anticancer agents via thiol signalingMn porphyrins, commonly known as solo mimics, act as radioprotectors of normal tissue and anticancer agents via thiol signaling
Department of Radiation Oncology-Cancer Biology Duke University Medical Center, Durham, NC 27710, USA ibatinic@duke.eduMn porphyrins, commonly known as SOD mimics, act as radioprotectors of normal tissue and anticancer agents via thiol signalingClinical trials with cancer patients on the radioprotection of normal brain, salivary glands, mouth mucosa and low pelvic region. The 5th clinical trial is on non-cancerous applications of another analog MnTE-2-PyP5+ (AEOL10113, BMX-010) – atopical dermatitis and itch. While initially developed as SOD mimics, over 2 decades of research taught us that MnPs are able to interact with numerous biological targets acting as antioxidants and pro-oxidants while producing favorable therapeutic effects. Combined efforts of numerous groups that worked on basic and translational aspects of MnPs demonstrated that MnPs, in the presence of glutathione and H ₂ O ₂ , oxidize protein cysteines thereby effecting signaling processes. The most obvious impact of MnP was on the oxidation/S-glutathionylation of NF-kB. Additionally the impact of
been reported also.