

Chimie ParisTech

SYLLABUS

3rd YEAR OF THE ENGINEERING CYCLE

SEMESTER 5

Table of the teaching units

	MH35BIO01	Applied microbiology and industrial bioprocesses				
Biotechnologies O.Ploux	MH35BIO02	Drugs : from design to patient				
0.1100	MH35BIO03	Biotechnologies and biological drugs				
	MH35PRO01	Introduction to Equipment Technology				
Industrial Processes	MH35PRO02	Process Control and Scaling				
	MH35PRO03	Risk management and process simulation				
Processes and Sustainable	MH35MAT01	Materials of the Cultural Heritage and durability				
Materials	MH35MAT02	Materials and Environement				
O. Majerus	MH35MAT03	Selection and design of materials for the sustainable city				
Energy	MH35ENE01	A world without CO2?				
V. Lair	MH35ENE02	Nuclear Energy				
Green Chemistry and Ecodesign	MH35CMV01	Valorization of bioresources				
F. De Montigny	MH35ECO	From ecodesign to recycling				
Physicochemistry, Formulation and	MH35PFC01	Physicochemistry and formulation				
Cosmetology M. Minier	MH35PFC02	Cosmetology for engineers				
Management, Innovation and	MH35CAS	Consulting and Strategic Analysis				
Consulting P. Vernazobres	MH35ENT	Innovation and Entrepreneurship				

Timetable

	Monday	Tuesday	Wednesday	Thursday	Friday
АМ	Management	MH35BIO01 MH35PRO01 MH35CMV01 MH35MAT01	MH35PFC01 MH35ENE01	MH35MAT03 MH35BIO03 MH35PRO03	management
РМ	MH35CAS	MH35BIO02 MH35PRO02 English	MH35PFC02 MH35ENE02 English	MH35ECO MH35ENT	MH35MAT02 TOEIC

Management & Leadership seminar Management and economics Entrepreneurship, professional project Scientific and business English PSL Week Additional courses

SEMESTER 6

Engineering end-of-study project

3A S5	MH35BIO01	Applied microbiology and industrial bioprocesses <i>Key words :</i> living cell, metabolism, microbial kinetics, bioproduction						
Responsible	Responsible : MINIER Professeur michel.minier@chimieparistech.psl.eu							
ECTS : 5	<i>Course</i> 34 h	<i>Tutorials</i> 2 h	Practical work 4 h	Mentoring	<i>Evaluation method :</i> 50% written 50% oral presentation			
This cours academic 1) The bio 2) The diff	 Course outline : This course aims to discuss the applications of microbiology to bioprocesses. The various themes addressed by academic and industrial speakers are 1) The bioprocess technique (cultivation, selection, monitoring methods) 2) The different applications of living cells (microorganisms, plant or animal cells,) in many sectors: energy, fine chemicals, agri-food, cosmetics, health, environment. 							
The stude	<i>Learning objectives :</i> The student has a basic competence, complementary to his training as a chemist, in bioprocesses. He knows how to set up a reactor for a wide variety of chemical applications.							
<i>Prerequisites :</i> bachelor level in chemistry								
-	<i>Teaching language :</i> french <i>Documents, website :</i>							

54	MH35BIO02
S5	IVINSSBIUUZ

Drugs : from design to patient

Key words : Drugs, pharmaceutical industries, drug design, therapeutic targets, medicinal chemistry

Responsible : PLOUX Olivier Professeur

olivier.ploux@chimieparistech.psl.eu

ECTS : 5	Course	Tutorials	Practical work	Mentoring	Evaluation method : Oral exam of 30 min.
	40 h	0 h	0 h		

Course outline :

3 V

This course aims to give a general background in modern medicinal chemistry at the interplay of chemistry and biology, to third year students in chemical engineering. The course / lectures will be given by actors of the academic or industrial world and will focus on drug design, describe the main therapeutic targets and main available drugs and their mode of action. Modern in silico methods will be presented together with the modern medicinal chemistry principles and applications.

Learning objectives :

After attending this session, the students will be able to grasp the challenges met when designing a new drug targeting a particular therapeutic target. They should be able to join a research team working in the general field of medicinal chemistry either in academics or in the industrial world.

Prerequisites :

Fundamentals in organic chemistry and biochemistry (L2-L3 level).

3A	MH35BIO03
S5	IVINSSBIOUS

Biotechnologies and biological drugs

Key words : biotechnology, biotherapy, recombinant protein

Responsible	: Pascal Bigey Maître de Pascal.bigey@chimiep		1		
$FCTS \cdot 5$	Course	Tutorials	Practical	Mentorina	Evaluation met

ECTS : 5	Course	Tutorials	Practical	Mentoring	Evaluation method : written exam 100% or oral
			work		presentation 100%
	39 h	0 h	0 h		

Course outline :

This course, at the chemistry-biology interface, aims at explaining to a chemist all the basic concepts needed to understand a biotechnology project. Currently half of the new approved drugs are small molecules obtained by chemical synthesis, the other half being issued from biotechnologies. These products are nucleic acids or recombinant proteins. They are used both as drugs, and as diagnostic tools. However, chemistry is still a necessity for formulations purposes, or for chemical modifications aiming at improving the pharmaco-kinetics properties. It seems important that a chemical engineer has some knowledge about biologics drugs, which are currently the most important for the pharmaceutical industry : what they are, how to produce them and their main uses.

Learning objectives :

In the end, students should be able to :

- know enough biology concepts to understand how biotherapies work.
- Know the different biologic drug classes, and their main uses
- read and understand a project or scientific article in the field of biotherapies

The aim is to allow a chemistry student to quickly be functional in the chemistry part of a biotherapy project in the indystry, or to pursue their studies by a PhD program in biology.

Prerequisites :

the ENSCP biochemistry course

3A	
55	MH35PRO01

Introduction to Equipment Technology

Key words : Sizing - Equipment - Process diagram - Fluid transport - Heat exchangers

Responsible : Cédric Guyon maître de conférences Chimie Paristech Cedric.guyon@chimieparistech.psl.eu						
ECTS : 5	Course	Tutorials	Practical	Mentoring	Evaluation method : 100% written exam	
			work			
	42 h	0 h	0 h			

Course outline :

In the production field, manufacturing installations handling fluids, equipment used in energy transfer (pumps, compressors, turbines, heat exchangers) have an important weight in terms of both technical and economic performance. In this course, the main devices used in fluid transport and heat exchange, their operating principle, operating conditions and their role in processes will be presented. Based on the results obtained by simulation, the objective of the course is to size the materials and equipment concerned, to evaluate their operating and investment costs.

Learning objectives :

Students who have completed this course will be able to:

- Make preliminary calculations, as part of a pre-feasibility study, for a simple industrial installation

-Propose a coherent process flow diagram

- -Search for the physico-chemical data necessary for all the calculations of a pre-feasibility study
- -Calculate the flows (pressure drops) and select the corresponding equipment

-Sizing, within the framework of a pre-study, the main rotating equipment (pump and compressor) and selecting the associated technologies

-Sizing the main static materials (exchangers, balloon,...) and selecting the associated technologies -To make an economic estimate of the changes

Prerequisites :

Chemical Engineering 1&2 year

3A S5	MH35PRO02		Process Control and Scaling Key words : Sizing - Control - Distillation column					
Responsible : Cédric Guyon Maître de conférences Chimie Paristech Cedric.guyon@chimieparistech.psl.eu								
ECTS : 5	Course	Tutorials	Practical	Mentoring	Evaluation method : 100% written exam			
			work					
	42 h	0 h	0 h					

Course outline :

The management of industrial processes requires a dynamic approach to risk and major safety and regulatory variables in order to approach the notion of real-time production. The approach can only be achieved through simulators of real industrial units, capable of providing young engineers with experience and an understanding of the problems encountered in operation. Within the framework of this course, attention is paid to the study on a dynamic simulator of the regulation strategies applied to an industrial distillation column.

Learning objectives :

Les élèves ayant suivi cet enseignement seront capables de :

- Proposer un schéma de procédé cohérent

- Rechercher les données physico-chimiques nécessaires à l'ensemble des calculs

- Dimensionner une colonne à distiller (Hauteur - Taille et nature des plateaux- Rebouilleur...)

-Mettre en place toutes les barrières de contrôle dans une unité de production

-Faire une évaluation économique de l'installation (cout d'investissement – main d'œuvre – amortissementcharges variables...)

Prerequisites :

Chemical Engineering 1&2 year

3A S5 MH35PRO03

Risk management and process simulation

Key words : Chemical hazards, process safety, regulation, thermal runaway, process simulation (Aspen), hazard analysis methods

Responsible : Cédric Guyon Maître de conférences Chimie Paristech

Cedric.guyon@chimieparistech.psl.eu

ECTS : 5	Course	Tutorials	Practical work	Mentoring	Evaluation method : written 50%, TP 30%, Oral 20%
	12 h	0 h	30 h		

Course outline :

The objective of this teaching is to sensitize students to the concepts of thermal stability of substances, thermal runaway, operating conditions (real-time simulation) and process safety (risk analysis methods).

The first part of the course will be in the form of lectures on the risks of thermal runaway of products and chemical reactions, on the implementation of transient simulations and on hazard analysis methods.

The second part of the teaching will consist of a supervised project, implementing the reactions studied. The aim will be to design and manage a transient production unit (Aspen plus[®], Aspen Hysys[®] dynamic) and to validate the operational safety of the process in terms of chemical risks using hazard analysis methods

Learning objectives :

Students who have completed this course will be able to:

- Determine the important parameters of a chemical reaction (enthalpy of reaction and decomposition, reaction rate, TMRad : Time to Maximun Rate under adiabatic conditions).

- Know how to simulate an industrial process on a large real-time software (Aspen plus, Aspen Hysysys dynamic) in order to predict any process drifts.

- Know how to make a chemical process safe by validating its operational integrity (start-up, steady state, shutdown of the installation) using hazard analysis methods (HAZOP method, cause tree, butterfly knot...).

Prerequisites :

Process simulation base acquired during the 2nd year practical work

3A S5	MH35MAT01
----------	-----------

Materials of the Cultural Heritage and durability

Key words : complex materials, elaboration, alteration, conservation, multi-scale analytical methods, cultural heritage

Responsible : Odile Majérus Maitre de conférences

ECTS : 5	Course	Tutorials	Practical	Mentoring	Evaluation method : Written examination with		
			work		general questions on materials and a case study:50%.		
	27 h	3 h	3 h		Report on an interview with a specialist:50%		

Course outline :

The dominance of materials contributes to drive human civilizations. The materials of Cultural heritage have been first produced by humans in a given historical context, then they have evolved in their conservation environment. These materials keep the memory of their origin and of their evolution, which is printed in their multi-scale structure (nano to macro). They are witnesses of our history and should be conserved for the future generations. Studying these materials also helps in anticipating the evolution of current modern materials. This course is multi-materials and multi-disciplinary, encompassing the domains of materials sciences, analytical physical chemistry, human and social sciences. It enriches the general knowledge of students about materials and gives to them tools and examples to predict and evaluate the durability of materials in a given environment. It consists in interactive lectures relying on the basic knowledge of students on materials, in a 3 hours tutorial and in a series of research conferences.

Learning objectives :

At the end of the course, students :

- Have a consolidated knowledge of the specificities of different classes of materials (composition domain, chemical bond, structure, microstructure, elaboration process),

- Have developed their culture of materials, thanks to the historical point of view,
- Are able to propose an analytical approach adapted to a specific material,
- Are able to anticipate the probable evolution of a material in a given environment.

These abilities are evaluated by a final written examination containing general questions on materials and the resolution of a case study from the literature. In addition, students conduct an interview with a specialist of Cultural Heritage, and they have to report on the experimental approach and results of a study of this specialist.

Prerequisites :

M1 level in Materials Chemistry and Analytical Physical Chemistry

Teaching language : french

Documents, website : slide presentation, technical documentation https://coursenligne.chimie-paristech.fr/enrol/index.php?id=235

3A	MH35MAT02
S5	IVINSSIVIATUZ

Materials and environment

Key words : housing materials, mineral resources, energy processing

Responsible : Philippe Barboux Professeur des Universités
philippe.barboux@chimieparistech.psl.eu

ECTS : 5	Course	Tutorials	Practical	Mentoring	Evaluation method : three oral presentations
			work		(brainstorming, mid-term, final)
	12 h	12 h	24 h		

Course outline :

The module covers new technologies applied to environmental materials and especially those for housing. The major problems of the sustainable world are linked to energy, the disappearance of many mineral resources and environmental pollution. The course will include a part of theoretical courses (12h), company visits and a part of tutored projects (20h) presented by the students themselves and covering the following aspects:

- Environment and energy: materials for energy storage and transformation (photovoltaics, batteries, thermoelectricity...) materials for housings

- Strategic resources: save, substitute, recycle

Learning objectives :

The student should be familiar with the latest developments in materials for the environment and environmentally friendly processes. He knows how to manage a documentation project throughout the semester and present it to his classmates during several brainstorming sessions.

Prerequisites :

mineral and solid state chemistry, general chemistry at least bachelor level

/H35MAT03

Selection and design of materials for the sustainable city

Key words : material selection, performance, composition-microstructure-property relationships, material design

Responsible : Frédéric PRIMA Professeur

frederic.prima@chimieparistech.psl.eu

ECTS : 5	Course	Tutorials	Practical work	Mentoring	Evaluation method : oral presentation on project
	36 h	0 h	0 h		

Course outline :

This course provides a method for selecting the most efficient material for a given application defined by specifications. Ashby's method of material selection strategy is presented in a theoretical way.

The composition-microstructure-property relationships are studied in general terms and through examples relating to housing and urban materials: cements, ceramics, glass and glass ceramics, metal alloys, polymers.

Composite materials and architectural materials (whose characteristic dimension is in the order of mm) are approached as materials capable of associating properties that are a priori incompatible, and with the idea of encouraging the student to imagine new possibilities in a functional design approach.

The examples also illustrate the environmental functions of materials: lightening, thermal insulation in particular.

Learning objectives :

At the end of this course the student must

Know the definition and concrete examples of composite or architectural materials

Know how to design new materials, especially for sustainable cities

Use the Ashby method of material selection

Know how to compare the mechanical and thermal properties of the major classes of materials.

Prerequisites :

master level in material science

3A	NAU 2
\$5	MH3

SENE01 A WO

A world without CO2?

Responsible : Virginie LAIR

virginie.lair@chimieparistech.psl.eu

ECTS : 5	Course	Tutorials	Practical	Mentoring	Evaluation method : Personal project with report and
			work		oral presentation
	33 h	6 h	0 h		

Key words : CO2 capture, storage and recovery

Course outline :

This track proposes to train Chemical Engineers in the field of energy involving CO2-free processes or the valorization of the latter. It requires multidisciplinary skills in chemistry, one of the characteristics of our students, because it requires knowledge in molecular chemistry, processes, catalysis, materials and physico-chemistry.

After a few elements of cellular energy, a brief description of photosynthesis from an energy and biochemical point of view will be described. The concept based on a biomimetic approach to artificial photosynthesis will be discussed. We will also see how, by drawing inspiration from microorganisms and using the energy capacities of bacteria, biopile makes it possible to recycle the components of organic waste when it is powered by hydrogen from biomass.

The case of biogas: A presentation of the diversity of policies that lead to a wide list of technologies used in Europe for biogas exploitation and purification will be made and a European mapping of CO2 emissions related to biogas sites will be established. The technological and phenomenological locks for the treatment of biogas impurities will be discussed. In the meantime, fuel cells will be presented quickly, emphasizing the nature of fuel gas and its specificities. The properties and exploitation of CO2 in high temperature devices will be presented, in particular CO2 electrolysis and CO2/H2O co-electrolysis.

Then the different capture processes, particularly by chemical absorption, will be detailed, with emphasis on the choice of solvent and the integration of the process into the plants based on the case study. One way to limit the release of industrial CO2 into the atmosphere is to store it in underground layers after it has been captured. We will discuss the different options considered.

Finally, the various battery technologies, their advances and prospects for transport and their life cycle will make it possible to consider a way of storing electricity in the context of sustainable development without CO2.

Learning objectives :

Describe, list and analyse the different possibilities for CO2 energy recovery Explain the different storage routes with their advantages and disadvantages.

Prerequisites :

Teaching language :frenchDocuments,website:paristech.fr/course/index.php?categoryid=18https://coursenligne.chimie-

3A S5	MH35ENE02	ENE02 Nuclear Energy Key words : nuclear-based electricity, nuclear fuel : from mine to wastes						
Responsible	Responsible : Grégory Lefèvre Chargé de Recherches gregory.lefevre@chimieparistech.psl.eu							
ECTS : 5	ECTS : 5 Course Tutorials Practical work Mentoring Evaluation method : Project 30 h 9 h 0 h							
Course outline : This course provides an overview of the nuclear fuel cycle, detailing the steps where chemistry has an important role. It provides students with the key elements to understand the nuclear power cycle. It is not aimed at a public wishing to pursue a career in this field (in which case, the Nuclear Energy Master's degree is more appropriate), but enriches general knowledge on energy and environmental issues. The visit of the ORANO La Hague industrial site is planned.								
<i>Learning objectives :</i> The student will be able to understand nuclear power generation. The student will be able to describe the recycling of nuclear fuel, and the choices for storing final waste. The student will have understood the biological effects of ionizing radiation.								
Prerequisites : Solution and material chemistry								
<i>Teaching language :</i> french <i>Documents, website :</i> slide presentation								

Valorization of bioresources

Key words : biomass, biofuels, lignocellulose pre-treatment, biosourced platform molecules, other molecules of biosourced interest, biomater

Responsible : Frédéric de Montigny Maître de Conférences frederic.de-montigny@chimieparistech.psl.eu

<i>ECTS :</i> 5	Course	Tutorials	Practical work	Mentoring	Evaluation method : written exam + oral
	25 h	15 h	0 h		

Course outline :

- Presentation of the issues related to plant chemistry and concepts ranging from biomass to biomaterials and platform molecules...

- Presentation of the concepts of plant chemistry allowing to replace fossil carbon by plant carbon, either by a substitution strategy or by the development of new biosourced materials.

- The concepts covered will include: biomass, biofuels, lignocellulose pre-treatment, biosourced platform molecules, other molecules of biosourced interest, biomaterials.

Learning objectives :

Presentation of tools for the design and the implementation of industrial processes that meet the challenges of sustainable development: use of renewable materials from biomass, improvement of eco-compatibility of processes, development of industrial synthesis strategies considering all sustainability criteria.

Prerequisites :

3A
\$5

MH35ECO

From ecodesign to recycling

Key words : circular economy, life cycle analysis, eco-design, recycling

Responsible : Anne Varenne Professeur

anne.varenne@chimieparistech.psl.eu

ECTS : 5	Course	Tutorials	Practical	Mentoring	Evaluation method : Written report and oral
			work		presentation of the project
	24 h	12 h	0 h		

Course outline :

This course is intended to raise awareness among students of the importance of taking into account the environmental impact, related to the use of a particular material or process, during the design stages of a finished or semi-finished system. It is based on a macroeconomic vision of the environmental problems to be taken into account when designing. The notions of the life cycle of materials will be addressed in order to acquire the knowledge essential to the realization of eco-audits. The different strategies for selecting materials or processes will then be applied, based as much as possible on concrete case studies.

Teaching is a continuum between courses, seminars (actors from the professional world of eco-design, recycling, circular economy), active participation of students around a project and a restitution of the acquisition of skills in the form of presentations. The project work will start with a product. A reflection of the upstream and downstream aspects of this product will lead the group to a description of the life cycle of this compound. The objective of this training is to deepen the concepts through criticism and the construction of a thorough and global reflection on eco-design, waste management, recycling and the circular economy in a more global way

Learning objectives :

Provide the main keys to tackle eco-design and recycling, through a scientific, technical, economic and societal vision, so that future chemical engineers become actors of innovation which is a challenge in this field. The working approach in project format will give rise to a critical reflection of the existing situation in order to identify innovative ways that need to be explored further.

Prerequisites :

Notions in all fields of chemistry in the first and second year courses of the engineering program.

Teaching language : french

Documents, website : french and english documents

3A S5

MH35PFC01

Physicochemistry and formulation

Key words : formulation, polymers, surfactants, dispersions, emulsions, foams

Responsible : Michel MINIER Professeur

michel.minier@chimieparistech.psl.eu

ECTS : 5	Course	Tutorials	Practical	Mentoring	Evaluation method : written examination (3h)
			work		
	24 h	6 h	10 h		

Course outline :

This course introduces the concepts necessary to understand the complex formulated systems of colloidal dispersions, surfaces/interfaces and self-organized systems that are part of soft matter. The multi-scale approach will allow us to understand how the control of interactions occurring at the interface scale often determines the properties of dispersed systems.

This course is intended for students interested in the scientific and technical basics of soft matter formulation. It is used in cosmetology but also in many other fields of application such as pharmaceuticals, food processing, petroleum, detergents, bitumen and materials in general...

Learning objectives :

At the end of the EU, the student must be able to identify the scientific aspects behind a recipe for formulating a complex system (principles of colloidal scale interactions, mixing and stabilization methods).

He masters physical phenomena, in particular those at mesoscopic scales that allow him to move from his knowledge as a chemist to the development of complex industrial systems.

Prerequisites :

at least bachelor level in physical chemistry

3A
\$5

MH35PFC02

Cosmetology for engineers

Key words : cosmetology, formulation, skin physiology

Responsible : Michel MINIER Professeur

michel.minier@chimieparistech.psl.eu

<i>ECTS :</i> 5	Course	Tutorials	Practical work	Mentoring	Evaluation method : written examination
	32 h	4 h	4 h		

Course outline :

The cosmetics industry is an important employment area for chemical engineers, particularly in the research and development of innovative products and production processes.

The objective is to provide a basis both for the main chemical classes of cosmetic ingredients (fats, pigments and dyes, flavours, polymeric texture agents, other active ingredients, etc.), for the biological tissues on which they are supposed to act (skin, hair, nails, etc.) and for current industrial issues (eco-design of processes, new "natural" ingredients, aspects of the engineering profession in this field, etc.).

Program

1- The skin: structure and functions.

2- Natural and synthetic raw materials.

- Chemistry of flavours and colours; Mineral pigments; State Gel; Polysaccharides in Cosmetics: Rheology / Structure relationship; Solid soaps; Hair and hair products; Melanin and complex mixtures; Sensory and cosmetics 3- Production processes.

- Example of the management of an industrial production workshop; Biotechnologies.

4- Visits and presentations.

Learning objectives :

At the end of this course the student

- knows the principles of skin functioning (biology, physiology).
- masters natural and synthetic resources and know where to find them.
- knows how to apply his knowledge of chemistry-physics pragmatically to the formulation of cosmetics.
- understands the trade-offs between efficiency and product safety
- understands the constraints related to the environmental and societal impact of human activities

Prerequisites :

at least bachelor degree in physical chemistry and molecular chemistry

MH35CAS

CONSULTING AND STRATEGIC ANALYSIS

Key words : Consulting, strategy, customer relationship, demand analysis, technical and commercial proposal

Responsible : Philippe VERNAZOBRES Maître de Conférences philippe.vernazobres@chimieparistech.psl.eu

	P				
ECTS : 5	Course	Tutorials	Practical	Mentoring	Evaluation method : carrying out a mission for a
			work		consulting firm and oral + attendance and individual
	35 h	0 h	0 h		report

Course outline :

3A

S5

The overall objective of this module is to introduce students to the consulting professions, by familiarizing them with the functioning of firms and the conduct of consulting assignments. It aims to promote the integration of graduates into the professions of consulting, or the professions of studies and business consulting in firms. Modalities: Conferences and learning by doing (workshops, projects...).

- Understand the challenges and professions of consulting.
- Understand how a firm operates and how to conduct an advisory engagement.
- Understand the concepts and main reading grids of strategic analysis.
- Develop analytical and intervention skills on different types of missions.
- Develop a service proposal and problem-solving posture.

Learning objectives :

At the end of the course, the student will be able to:

- Work in a project team in order to lead a consulting mission and deliver a service to a client.
- Understand a field of knowledge and develop analytical and synthesis skills in the fields of consulting and strategic analysis.

• Take into account the stakes of the company and society: economic stakes, commercial requirements, economic intelligence, ethical and environmental issues, principles of sustainable development...

• Master the methods, processes and tools necessary to conduct a consulting assignment: analysis of the request, writing a proposal, planning and execution of the assignment, design of deliverables and presentation to the client.

- Manage a customer relationship, from demand analysis to project delivery.
- Find relevant information to respond to the customer's request, evaluate and implement it.
- Write a presentation and defend it in front of clients.

Prerequisites :

Attending and validation of the school's 1st and 2nd year management courses. Or equivalent for students entering the 3rd year.

3A S5	MH35ENT	INNOVATION AND ENTREPRENEURSHIP <i>Key words :</i> project, team, start-up, business model, business plan, investors, commitment, initiative						
Responsibl	e : Delphine Bourland, e delphine.bourland@	•		allal, Boss Co	nsulting Enseignante, Chimie ParisTech			
ECTS : 5	<i>Course</i> 45 h	<i>Tutorials</i> 0 h	Practical work 0 h	Mentoring	<i>Evaluation method :</i> nterim reports - Final Business Plan: written + presentation to a jury of capital providers			
and profe Modalitie - Develop professio - Present - Develop	essional mentors. es: Learning by doing	rial spirit an iness plan to	d entrepre	eneurial ski	eams for 4 months with the support of coaches Ils, which can then be practiced in different r			
At the en - Form a t - Design a - Build an - Carry ou	and implement a mar d develop a business ut financial planning (vative proje keting strate model plan, cost), i	cts, select t gy, analyse ntegrate le	e the project gal element	evant ones (feasibility, desirability, viability) c environment and the market s (intellectual property, company form) els and capital providers			
Prerequis	sites :							
-	<i>language :</i> french hts, website : handou	ts						

3A S5 MH35TC.ML

MANAGEMENT & LEADERSHIP SEMINAR

Key words : management, leadership, group dynamics, team, meeting, negotiation, conflict, emotional intelligence, complexity, systems

Responsible : Philippe Vernazobres Maître de conférences

philippe.vernazobres@chimieparistech.psl.eu

ECTS : 1	Course	Tutorials	Practical work	Mentoring	Evaluation method : attendance, participation
	h	28 (tutorat) h	h		

Course outline :

This seminar consists in putting students in a situation of learning by doing, in order to develop their managerial, leadership, teamwork and communication skills.

Students are divided into groups of twenty, supervised by a teacher/consultant for 4 days. They are confronted with real professional and managerial situations, and play different professional roles. Debriefings of these scenarios allow the development of skills through action and reflective analysis. Additional contributions on managerial tools and concepts are provided by the facilitators.

Learning objectives :

At the end of the seminar, the student will be able to:

- Implement managerial and leadership skills.
- Implement the basics of interpersonal and managerial communication.
- Understand group dynamics, lead a team.
- Lead meetings and working groups.
- Implement the basic postures and processes of negotiation and conflict management.
- Understand and act in a complex and organized system.
- Apply political, relational and emotional intelligence and political skills.

• To better integrate into professional life, to integrate into an organization and a team: exercise of responsibility, team spirit, commitment and leadership, communication with different interlocutors.

• Know yourself better, self-assess, manage and develop your skills (interpersonal skills, soft skills).

Prerequisites :

Attending and validation of the school's 1st and 2nd year management courses. Or equivalent for students entering the 3rd year of the school.

Teaching language : french Documents, website : tool sheets

3A S5	MH35TC.MEG

MANAGEMENT AND ECONOMICS

Key words : marketing, corporate finance, market finance, management control, transdisciplinary vision

ECTS : 2	Course	Tutorials	Practical work	Mentoring	Evaluation method : Written final check			
	24 h	0 h	0 h					
Course o	utline ·							
company The UE c - A mand World flc - A modu	/ and cross-funct onsists of two m latory module of ows and markets ile to choose fro	ional issues. odules - Courses international eco , environmental a m 3 themes (12 he	nomics (12 nd knowle ours):	hours)	m to integrate the economic challenges of the			
	•	ce, market financ		operational	markating			
Marketing - customers, markets, strategic marketing, operational marketing								
Manager	Management control - costs, performance, decision support, budgets							

- Understand vocabulary and concepts
- Understand the issues of power and communicate with professionals
- Decipher, analyze, implement solutions specific to these dimensions

Prerequisites :

3A S5 MH35TC.MEP

ENTREPRENEURSHIP, PROFESSIONAL PROJECT

Key words : team, start-up, business model, business plan, initiative, professional project, CV, motivation letter, interview, networking

Responsible : Philippe Vernazobres Maître de Conférences Chimie ParisTech philippe.vernazobres@chimieparistech.psl.eu

ECT	rs : 2	Course	Tutorials	Practical	Mentoring	Evaluation method : Entrepreneurship : Final
				work		Business Plan: written + presentation to a jury
		56 h	0 h	0 h		

Course outline :

Entrepreneurship (initiation) - Learning by doing - Tutoring

Imagine an innovative project in a team, carry out an entrepreneurial process over 6 weeks in order to be able to write and present a business plan.

Assessment methods: Final Business Plan: written + presentation to a jury

Professional project - Teaching through experience - Workshops, interviews, round tables

- 2 half-day modules per group of 20 to 25 students to reflect on different professional paths, work on the cover letter, CV, recruitment interviews and the network approach, work in sub-groups.

- A half-day of round tables organized in partnership with alumni to exchange with experienced professionals on their careers

Learning objectives :

Entrepreneurship: At the end of this module, students will have experienced an entrepreneurial process. They will have developed their ability to:

- Entrepreneurship and innovation
- Work in a team with resource persons

- Take into account the cross-cutting issues of the value proposition, marketing, financing and legal dimension of an innovative project

Present and defend their project in writing and orally

Professional project: At the end of this module, students will have acquired the ability to get to know themselves better and manage their skills. They will be able to:

- Better understand the recruitment process
- Set up a network approach
- Make professional choices

Prerequisites :

3A S5

MH35TC.ANG

SCIENTIFIC AND BUSINESS ENGLISH

Key words : English, Scientific, Business, Intercultural Skills

Responsible : Daria Moreau Chargée de mission langues et management commercial daria.moreau@chimieparistech.psl.eu							
ECTS : 2	Course	Tutorials	Practical	Mentoring	Evaluation method : an oral exam (internship		
	0 h	24 h	<i>work</i> 0 h		presentation), completion of a written task, TOEIC exam 800+		
	011	24 11	011				

Course outline :

The courses are designed to improve English skills and to teach linguistic autonomy in order to prepare students to work with technical and scientific English in an international and intercultural context. They are also meant to help students pass the TOEIC exam required by the CTI in order to obtain the ChemistryParisTech engineering diploma.

The classroom courses are complemented by "e-learning" on the Moodle platform, by "learning by doing" and by self-learning in the multimedia classroom.

Students of lower levels can also benefit from personalized help and various TOEIC preparation tools crafted to their needs.

English courses are to:

- train for the International English Test (TOEIC),

- develop analytical skills and synthetic processing of scientific, technical and cognitively demanding documents in English, whether written, audio or video,

- practice writing of high quality technical, professional or scientific texts in English,

- discuss cultural topics of at least one English-speaking country and to provide a good knowledge of the Anglo-Saxon environment in order to grasp the psycholinguistic nuances of English (innuendo, cultural allusions),

- develop oral communication through presentations followed by questions, internship presentations, job interview simulations and debates.

Learning objectives :

The student will increase his/her in-depth knowledge of grammar, thematic and scientific vocabulary by communicating flawlessly in both written and oral business English in a multicultural company.

The student will report on his/her experience of the international internship and will compare cultural similarities and differences and will self-assess his/her ability to adapt to international contexts.

- The student will give a 30 minute-long without notes presentation on his/her internship (with cv).
- The student will be able to participate in a debate on an everyday life, technical or scientific subject.
- The student will easily answer factual questions on a given subject.

The student will be able to understand, analyse and synthesize scientific, technical and cognitively demanding documents in English, either written, audio or video.

The student will be skilled at using contextual, grammatical and lexical clues to infer an attitude, a mood, intentions and anticipate the next steps.

The student will understand the structure of the TOEIC exam and will develop a personal strategy to maximize his/her exam score.

Prerequisites :

C1

Teaching language : english

Documents, website : audio and video documents, factual documents https://coursenligne.chimie-paristech.fr/course/view.php?id=333

3A	MH35TC.PSL	PSL Week							
Responsible : Pierre Haquette Maître de conférences pierre.haquette@chimieparistech.psl.eu									
ECTS : 3									
Course outline : During the PSL week, students follow one week of classes at Chimie ParisTech or in another PSL establishment: ESPCI, la Femis or Mines Paristech. This week of courses is an opening week where engineering students can study a field related to chemistry, in fundamental or applied sciences, but also in project management, such as Drugs and pathologies, Technologies and Innovation, History of science, Design of innovative products, The value of water, Processes and microfluidics The form, content and assessment of each week depend on the course week chosen.									
Learning objectives : Acquisition of skills and knowledge complementary to their field of specialization - mobility of students between PSL schools - to encourage interaction between engineering students in PSL schools									
Nature of lessons: Cours, conférences, projets									

Teaching language : French and/or English

Т

3A UH36PFE

Engineering end-of-study project

Key words : project management at engineering level

Responsible : Pierre Haquette Maître de conférences

pierre.haquette@chimieparistech.psl.eu

					-
ECTS : 30	Course	Tutorials	Practical	Mentoring	Evaluation method : report 50% Oral presentation
			work		50%
	h	h	h		

Course outline :

The student completes a six-month internship during which he/she must demonstrate that he/she is able to mobilize all the knowledge and skills acquired during his/her schooling for the purpose of generating innovative work. The internship must correspond to the professional level of an engineering executive, whether in the performance of technical work (research, analysis, production, etc.) or in the management of a project in a company requiring responsibility.

For engineering students only: At least one of the two second or third year internships must be completed in a company. At least one long-term international experience (at least 5 months) is also required, either in the form of one of the two internships 2A or 3A or a mobility of at least one semester to follow theoretical courses abroad.

Learning objectives :

The student must demonstrate the ability to take initiative. They must be able to document, identify, model and solve even unfamiliar and not fully defined problems. They must demonstrate organizational skills, planning and the ability to manage a project.

He must demonstrate his ability to take into account the issues of work relations, ethics, safety and health at work. It must also respect societal and environmental issues, in particular by applying the principles of sustainable development.

He must demonstrate his ability to integrate into professional life, to integrate into an organization, to show his ability to take responsibility, his team spirit, his commitment. He must show a capacity for project management while knowing how to communicate with specialists as well as non-specialists

Prerequisites :

scientific and technical knowledge at master level

ADDITIONAL COURSES

• Additionnal foreign language(s):

French as Foreign Language :

Description : Lectures focus on:

1) the ability to follow and participate in science courses: oral and written comprehension, written and oral production

2) communication with French students and social life in France, in order to facilitate integration into the School and in France

Cultural activities (museum visits) may be organised to help student learning French

Objective : To get at least B2 level in French or C1

Knowledge : Depends on the level

Skills : Understanding of the everyday language through film, radio or television broadcasts Improvement of writing skills through writing and rewriting workshops.

Ability to listen and express oneself is encouraged through exercises to summarize audio-visual programmes, and debates, the presentation of cultural "PowerPoints" given to students in small groups - 2 groups (B1 and B2) – 2h per week per semester

Spanish	Russian
German	Portuguese
Chinese	Italian
Japanese	Arabic

Responsible: Daria Moreau daria.moreau@chimieparistech.psl.eu ECTS credits: 1

• Sport

ECTS credits: 1